

IFIP WG 5.7

Computer-Aided Production Management (Founded 1978)

Historic overview

Asbjørn Rolstadås

Norwegian University of Science and Technology

Lady Ada Lovelace (1815 – 1882)

- Talented mathematician
- Studied under Charles Babbage
- Worked with Babbage on his "Analytical Engine"
- World's first programmer

e e	-	Variables acted upon.	Variables receiving results.				Data.		Working Variables.									Result Variables.				
Nature of Operation	Nature of Operation			Indication of change in the value on any Variable.	Statement of Results.	1V10001	¹ V ₂ O 0 2 2	^{IV3} 0 0 4 1 1	°V4 O 0 0 0 0	°V\$ 00000	\$°0000	°V7 00 0 0	9.0000	°V°0000	⁹ V ₁₀ 0 0 0	⁰ V ₁₁ 0 0 0 0	ev ₁₂ O 0 0	0 0 0 0	E B1 in a decimal O A fraction.	[2] B ₃ in a decimatO ₁₃ fraction.	E Bein a decimal O	NOTE L
×	× 1	$\frac{V_2 \times {}^1V_3}{V_4 - {}^1V_1}$	1V4. 1V5. 1V6 2V4	$ \left\{ \begin{matrix} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{4} = {}^{2}V_{4} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{matrix} \right\} $	= 2 n = 2 n - 1		2	n 	2n 2n - 1	2 n	2 n						27 M					No Way
++++++	+ + + =	$V_5 + V_1$ $V_5 + V_4$	² V ₈	$ \left\{ \begin{array}{l} {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{2}V_{5} = {}^{0}V_{5} \\ {}^{2}V = {}^{0}V \end{array} \right\} $	= 2n + 1 $= \frac{2n - 1}{2n + 1}$. 1			 0	2n+1 0						$\frac{2n-1}{2n+1}$						1 1 m
+	+ 1	V11+1V2	² V ₁₁	$ \begin{cases} {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{2}V_{11} = {}^{0}V_{11} \end{cases} $	$=\frac{\frac{1}{2} \cdot \frac{2n-1}{2n+1}}{\frac{1}{2n-1} - \frac{1}{2n-1}} = \lambda.$	· ··· ·	2									$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		1 2n - 1			1	
-	- 1	$v_{13} = iv_{11}$ $v_{3} = iv_{11}$	¹ V ₁₀	$ \left\{ \begin{smallmatrix} {}^{0}\mathrm{V}_{13} = {}^{1}\mathrm{V}_{13} \\ {}^{1}\mathrm{V}_{5} = {}^{1}\mathrm{V}_{3} \\ {}^{1}\mathrm{V}_{1} = {}^{1}\mathrm{V}_{1} \end{smallmatrix} \right\} $	$= \frac{1}{2} \cdot \frac{2}{2} n + 1 - \frac{1}{2} + \frac{1}{2$	1		n							n - 1	0		$-\frac{1}{2}\cdot\frac{1}{2n+1}=A_0$		North		
+	+	$V_2 + {}^{0}V_2$	1V ₇	$ \left\{ \begin{array}{c} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{0}V_{7} = {}^{1}V_{7} \\ {}^{1}V_{6} = {}^{1}V_{6} \end{array} \right\} $	= 2 + 0 = 2 $= \frac{2n}{2} = A_1$		2				 2 n	2				2 n _ 1						
×	×	v _m × ^s v _m	۱۷ ₁₂	$\begin{cases} {}^{1}V_{11} = {}^{3}V_{11} \\ {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \\ {}^{1}V_{12} = {}^{9}V_{12} \end{cases}$	$= B_1 \cdot \frac{2n}{2} = B_1 \lambda_1 \cdot \dots \cdot $											$\frac{1}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$	$B_1, \frac{2n}{3} = B_1 A$		Bi		a3	
+	+ 1	V ₁₂ + ¹ V ₁₂ V ₁₀ - ¹ V ₁	² V ₁₃ ² V ₁₆	$ \left\{ \begin{smallmatrix} 1 V_{13} = {}^2 V_{13}^{12} \\ 1 V_{13} = {}^2 V_{13}^{12} \\ 1 V_{10} = {}^2 V_{10} \\ 1 V_{1} = {}^1 V_{1} \end{smallmatrix} \right\} $	$= -\frac{1}{2} \cdot \frac{1}{2n+1} + B_1 \cdot \frac{1}{2} \dots$ = $n - 2 (= 2)$										 n - 2		0	$\left\{-\frac{1}{2}\cdot\frac{2n-1}{2n+1}+B_{1}\cdot\frac{2n}{2}\right\}$	81 AL-14			
1		V ₆ - ¹ V ₁	IV.6	$\left\{\begin{smallmatrix} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{smallmatrix}\right\}$	= 2n - 1	. 1					2 n = 1											and the second se
1	+	$v_6 + 2v_7$	1 _{Vs}	$ \left\{ \begin{array}{l} {}^{1}V_{7} = {}^{2}V_{7} \\ {}^{2}V_{6} = {}^{2}V_{6} \\ {}^{2}V_{7} = {}^{2}V_{7} \end{array} \right\} $	$=\frac{2n-1}{3}$						2 n - 1	3	$\frac{2n-1}{3}$					i sheri a	1.17	123	-	
IC.	× 1	$V_8 \times V_1$ $V_6 - V_1$	4V ₁₁ 3V ₆	$\left\{\begin{smallmatrix} 1 & 8 & -1 & 8 \\ 3V_{11} = 4V_{11} \\ 2V_6 = 3V_6 \\ 1V_1 = 1V_1 \end{smallmatrix}\right\}$	$=\frac{2\pi}{2}\cdot\frac{2\pi-1}{3}$. 1					 2 n - 2		0			$\frac{2n}{2},\frac{2n-1}{3}$		angeneration and		N.S.	1	
	+	v ₁ + ² v ₂	^a V ₇	$ \left\{\begin{array}{c} 2V_{7}^{2} = 3V_{7}^{2} \\ 1V_{1}^{2} = 1V_{1}^{2} \\ 3V_{6}^{2} = 3V_{6}^{2} \\ 3V_{6}^{2} = 3V_{6}^{2} \end{array}\right\} $	=3+1=4	. 1					 2n-2	4		2n - 5	2	$\left\{\frac{2n}{2},\frac{2n-1}{2},\frac{2n-2}{2}\right\}$		a senten gover ge		and an arrest	e-sarri Cata	
L	×	¹ V ₉ × ⁴ V ₁	*v _n	$ \begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \\ {}^{4}V_{11} = {}^{5}V_{11} \\ {}^{1}V_{22} = {}^{1}V_{22} \end{cases} $	$= \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \Lambda_3$									0		a s s s s s s s s s s s s s s s s s s s		e merskel in bugen	and pill	ches		
	× +	$v_{22} \times v_{1}$ $v_{12} + v_{1}$	^{oV} 12	$\left\{\begin{smallmatrix} 0 V_{12} = 2V_{12} \\ 2V_{12} = 0V_{12} \\ 2V_{13} = 3V_{13} \\ 2V_{13} = 3V_{13} \end{smallmatrix}\right\}$	$= B_3 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} = B_3 \cdot \frac{1}{3}$ $= A_0 + B_1 \cdot A_1 + B_3 \cdot A_3 \cdot \dots \cdot \dots$		'									0	B ₂ A ₃ 0	$\left\{ A_3 + B_1 \Lambda_1 + B_5 \Lambda_3' \right\}$		Ba		
1	-1	² V ₁₆ - ¹ V ₁	¹ V ₁₆	$\left\{ {}^{1}V_{1} = {}^{1}V_{1} \right\}$	= n - 3 (= 1)	. 1		 H	ere foll	ows a re	petition	of Oper	rations 1	hirteen	n-3 to twen	ty-three.			and the			
1	+	₩u+°V	1v24	$\left \begin{cases} {}^{4}V_{13} = {}^{6}V_{13} \\ {}^{0}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} \right $	= B ₇													[·····································	-			
5	+	¹ V ₁ + ¹ V	a ¹ Va	$\begin{cases} {}^{1}V_{1}^{1}={}^{1}V_{1}^{1}\\ {}^{1}V_{3}={}^{1}V_{3}\\ {}^{4}V_{6}={}^{0}V_{6}\\ {}^{5}V_{7}={}^{0}V_{7} \end{cases}$	$= n + 1 = 4 + 1 = 5 \dots$ by a Variable-card. by a Variable card.	1		n + 1			0	0									1. martin	

Charles Babbage (1791 – 1871)

- "Father of the computer"
- "Difference Engine" mechanical specialpurpose computer
- "Analytical Engine" programmable generalpurpose computer using punched cards

Early highlights in the history of computing

- Alan Turing publishes his paper on the Turing Machine 1936
- John von Neumann architecture 1945
- First digital electronic computer developed 1936–1939 by IBM
- ENIAC (Electronic Numerical Integrator And Computer) first electronic general-purpose computer announced 1946
- UNIVAC commercial computer 1950
- Backus presents Fortran 1954
- Murray publishes Cobol 1959
- IBM PC 1981

Paris, June 1959

Representatives of computer societies from 18 countries met in Paris today to take the preliminary steps necessary to create an International Federation of Information Processing Societies which would carry on the sponsorship of future international conferences on information processing, including mathematical and engineering aspects, to establish international committees to undertake special tasks falling within the spheres of action of national member societies, and advance the interests of these member societies in international co-operation in the burgeoning information processing field.

- UNESCO organizes the first International Conference on Information Processing
- Considered as the first World Computer Congress.
- IFIP established under the auspices of UNESCO 1960

- First World Computer Congress, Paris 1959
- IFIP founded in 1960 under the auspices of UNESCO
- Isaac L. Auerbach first President
- Any national computer society may apply for membership – membership restricted to one society per country
- Activity: congress, conferences, publications
- Organization

Isaac I. Auerbach

CIRP Delphi Survey 1974

- By 1980, a computer software system for full automation and optimization of all steps in the manufacturing of a part will be developed and in wide use.
- By 1985, full automation and optimization of complete manufacturing plants, controlled by a central computer, will be a reality.
- By 1990, more than 50% of the machine tools produced, will not have a «stand-alone» use, but will be part of a versatile manufacturing system, featuring automatic part handling between stations, and being controlled from a central process computer.

Late 1970ies – CAD/CAM/CIM

- CAD
 - Product modelling
 - Bezier-curves
- CAM
 - Automation of process and operations planning
 - Numerical control of machine tools (PROLAMAT)
 - APT, EXAPT
- CIM
 - Integration concept launched by E. Merchant
- Shift in focus from design and manufacturing technology towards planning and control of operations

P. Bezier

E. Merchant

TC 5 in 1978 Computer Applications in Technology

- WG 5.1 Transportation
- WG 5.2 Computer-Aided Design (CAD) founded by Jakob Vlietstra chaired by Ernie Warman
- WG 5.3 Computer-Aided Manufacture (CAM) founded by Jozsef Hatvany chaired by Detlef Kochan
- WG 5.4 Standardized Hardware and Software Techniques
- WG 5.5 Continuous Process Industries
- WG 5.6 Maritime Industries

TC 5 meeting, Grenoble, 1978

- Chairman Jacob Vliestra
- Proposal for a new WG
- Resistance from 5.2 and 5.3
- Strong support from Jozef Hatvany
- Recommendation to GA to create WG 5.7 Computer-Aided Production Management
- Decided by GA in Oslo, 1978

Jacob Vliestra

Jozef Hatvany

Jozsef Hatvany (1926 – 1987)

- 1982 PROLAMAT paper
 "Advanced Manufacturing Systems in Modern Society"
- Cape 83 paper "Dreams, Nightmares and Realities"

József Hatvany

Computer and Automation Institute, Hungarian Academy of Sciences, H-1502, POB 63, Budapest, Hungary

This is a phenomenological survey of the history of computer-controlled manufacturing systems over the last thirty years. First, came the dreams of the imminent push-button factory, controlled by a central computer. Then, the nightmare experiences of the first pioneers, contending simultaneously with inadequate hardware, software, skill, funding, receptivity and their own underestimation of the extra dimension of unprecedented interdisciplinary complexity. Finally today's realities: the possibilities opened up by distributed multiprocessor systems, by local area networks and by advanced systems synthesis techniques, the limitations imposed by investment, education, employment and environmental considerations.

WG 5.7 first meeting Copenhagen 1979

IEID

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING

Date: 1979-09-13

Address reply to: Associate Professor Peter Falster Production Engineering Laboratory NTH-SINTEF 7034 Trondheim-NTH Norway

MINUTES OF THE 1st MEETING IN IFIP WG 5.7, AUGUST 31, 1979

10.00 hours, ELECTRIC POWER ENGINEERING DEPARTMENT, TECHNICAL UNIVERSITY OF DENMARK, LYNGBY, DENMARK

tendants:	G. Doumeingts	(France)
	P. Falster	(Denmark)
	R.B. Mazumder	(Switzerland)
	E. Printz Moe	(Norway)
	A. Rolstadås, Chairman	(Norway)
	B. Svärdson	(Sweden)
	H. Wildemann	(West Germany)

. Opening

A. Rolstadås opened the meeting as chairman and welcomed the participants. He gave a short retrospect for the establishment of the working group and expressed his sincere hope for a fruitful work in the group the coming years.

Production Planning and Control in the 80ies

production management systems

p. falster and a. rolstadås

PREFACE

The IFIP Working Group 5.7 on "Automation of Production Planning and Control" was established in the autumn 1978. The working group addresses itself to topics as

- design of and need for new production planning and control systems taking into account new technological and market developments
- standardization of international acceptable terms and phrases
- reduction of costs through development and standardization of techniques, software, and hardware
- development of the international level of know-how

In order to accomplish its scope the working group organized its first workshop to be held in Trondheim, Norway, in September 1980. The workshop was sponsored by the International Federation for Information Processing (IFIP) and the Production Engineering Laboratory, SINTEF-NTH.

The number of participants was 24 primarily coming from the working group but supplemented with invited speakers and people outside the group.

1980 – Opening session

Generation	Type of system	Decade
1	Integrated batch	1960-ies
2	Interactive real time	1970-ies
3	User adaption	1980-ies

- PPC systems in the 80ies completely different
- Market conditions and dynamic environment together with new technology will require systems offering new functions based on new theory
- New ICT technology will enable strongly decentralized systems
- Development costs will be reduced by building prototypes

From MRP to ERP

- BOMP Bill of Material Processor
 - Developed by Gene Thomas at IBM in the 1960-ies
 - Database containing the bill of material for all products and parts
- MRP Material Requirements Planning
 - Uses BOMP to calculate when and how much of raw materials and purchases has to made based on sales forecasts
- MRP II Manufacturing Resource Planning
 - Extension of MRP to include all manufacturing resources
- ERP Enterprise Resource Planning
 - Integrated management of main business processes

The Criticism against MRP

- Inaccurate sales forecasts
- Errors in BOMP
- Estimated lead times often wrong
- Inaccurate inventory level

- Large inventories
- Long throughput times

And then

- Taiichi Ono Toyota Production system
 - Jidoka and Just in time
 - Kanban pull rather than push
 - Heijunka and Kaizen
- MIT The Machine that Changed the World (1990)
 - Lean production
- Eliyahu Goldratt
 - The Goal
 - Theory of constraints
 - Drum Buffer Rope

TOYOTA PRODUCTION SYSTEM

IFIP WG 5.7 contributions

- Brought the advancements in industry into academia
- A forum for discussion and critical reflection
- Built a theoretical foundation in production management
- Research and education
- Conferences to exchange experience between industry and academia
- Journal for publication of research
- Built an international network

Since 1980 the group has grown from 11 to 112 members, 28 honorary members, and 41 candidate members in 2023.

Chairmen 5.7 ВM

Asbjørn Rolstadås 1978-1983

Umit Bittici 2001-2007

Peter Falster 1983-1989

Marco Taisch 2007-2013

Guy Doumeingts 1989-1995

Dimitris Kiritsis 2013-2019

Eero Eloranta 1995-2001

Gregor von Cieminski 2019 -

WG 5.7 activities

- Conferences
- IFIP state-of-the- art books
- International journal, 1989
- Joint research (FOF), 1989
- Special Interest Groups
 - Serious Games in Production Management
 - Product and Asset Lifecycle Management Service Engineering
 - Service Systems Design, Engineering and Management
 - Smart Manufacturing Systems & Cyber-Physical Production Systems
 - Lean Thinking & Practice
 - Operations Management in Engineer-to-Order Manufacturing
 - Production Management in Food Supply Chains
 - Eco-Efficient and Circular Industrial Systems

Participants at first APMS, Bordeaux 1982

Guy Doumeingts

the with the

APMS 1982 Program Committee

INTERNATIONAL PROGRAMME COMMITTEE

S. AUGUSTIN (Siemens A.G.) (D) A. BUCHEL (Technische Hochschule Zürich) (CH) W.A. CARTER (Senior Vice-President and General Manager CAM-I) (GB) G. DOUMEINGTS (Université de Bordeaux 1) (F), Chairman of "APMS 82" S. EILON (Imperial College of Science and Technology) (GB) P. FALSTER (Technical University) (DK), Vice-Chairman IFIP WG 5.7 I. HAM (Pennsylvania State University) (U.S.A.) H.C. HOFER (Hilti AG) (FL) H. HUBNER (Institute for Advanced Studies Vienna) (A) D. LEVY (Cisi) (F) R.B. MAZUMDER (Brown Boveri & Cie) (CH) E.P. MOE (Profo) (N) M. NAPIERALA (University of Wroclaw) (PL) N. OKINO (Hokkaido University) (J) A. ROLSTADAS (NTH-Sintef) (N), Chairman IFIP WG 5.7 N.W. SMITH (Westinghouse Electric Corporation) (U.S.A.) B. SVARDSON (Habberstad A/B) (S) E. SZELKE (Hungarian Academy of Sciences) (H) K. TAKEDA (Production Engineering Research Lab. Hitachi) (J) P. TIMM (LK-NES) (DK) P. URONEN (University of Oulu) (SF) H. WILDEMAN (Indust. Betriebswirtschaftslehre zu Köln) (D) H. YOSHIKAWA (University of Tokyo) (J)

advances in production management systems

edited by g.doumeingts and w.a.carter

north-holland

Marco Garetti Doctoral Workshop

- Provides Ph.D. students with the opportunity to discuss their research and receive feedback and exchange ideas
- Ph.D. students submit a proposal up to 15 pages
- The objective of the proposals is to explain general research questions and outline the approach as well as the current status of the research.
- The texts are not published in the proceedings but can be considered for a possible submission to a journal.

John L. Burbidge (1914-1994)

- The Principles of Production Control1962
- In strong opposition to MRP
- PFA and PBC
- Burbidge Award 1995
 - Author(s) of the best paper
 - Person(s) that made the best presentation.

IFIP state-of-the-art books 1988

State-of-the-Art Reports

A. Rolstadås (Ed.)

Computer-Aided Production Management

Part I Stages of Development in Production Management
Chapter 1. Production Management Systems Asbjørn Rolstadås
Part II Production Management Philosophies
Chapter 2. MRP/MRP II John Harhen Chapter 3. Just-in-Time Production – A New Formulation and Algorithm of the Flow Shop Problem
Hajime Yamashina Chapter 4. The Drum-Buffer-Rope (DBR) Approach to Logistics Oded Cohen
Chapter 5. Period Batch Control John L. Burbidge Chapter 6. All-Embracing Production Control
Gideon Halevi
Fundamental Techniques
Chapter 7. Graph Theoretical Approaches
Chapter 8. Simulation and Simulation Models
Jim Browne
Wing S. Chow, Sunderesh Heragu, and Andrew Kusiak
Chapter 10. Artificial Intelligence Approach to Production Planning
Anurew Rusiak

Part IV The Computerized Production Management System

Chapter 11. Databases	
Johan C. Wortmann	169
Chapter 12. User Interface	
Eero Eloranta	181
Chapter 13. Systems Analysis Techniques	
Guy Doumeingts	201
Chapter 14. Fourth Generation Languages	
Jarle Aaram	225
Chapter 15. Design of a Generalized Job Shop Control System	
and PM Packages	
Harinder Jagdev	233
Chapter 16. Validation of Job Shop Control Software - A Case Study	
Harinder Jagdev	253

Part V

3

23

37

51

71

77

97

123

135

149

Some Important Aspects of Production Management Functions

Chapter 17. Production Scheduling	
John R. King	267
Chapter 18. Production Planning and Scheduling in Flexible	
Manufacturing Systems	
Kathryn E. Stecke	281
Chapter 19. Forecasting and Stock Control	
Birger Rapp	289
Chapter 20. Integration of PM into CIM	
Gideon Halevi	303

Part VI

Industrial Applications

Chapter 21. Multi-Product Batch Production on a Single Machine –	
Samuel Eilon	319
Chapter 22. Production Control in Small Companies	
Kai Mertins	345
Chapter 23. Production Control in the Car Industry	
Wolfgang D. Thurow	355
Chapter 24. Production Control in the Aircraft Industry	
Bernd Hirsch and Gustav Humbert	363
Chapter 25. Job Shop Production Control	
Oddmund Oterhals	375
Chapter 26. Production Control in the Electromechanical Industry	
Siegfried Augustin	385
Chapter 27. Production Control in the Electronics Industry	
Ichiro Inque	393

PPC

Editor: Professor Bjørn Andersen, Co-Editor: Dr Stephen J. Childe Book Reviews Editor: Dr Irene Roda

Associate Editors:

- Dr Yang Cheng
- Dr Paolo Gaiardelli
- Professor Gordian Udechukwu Ojiako
- Dr Laura Purvis

From the first editorial 1989 (Asbjørn Rolstadås): Why a new journal?

This journal is intended as a forum for all PPC-related activities, from the point of view of both academic research, and industrial application and development.

Joint projects

Project manager Hans Wortmann

Factory of the Future: Towards an integrated theory for one-of-a-kind production

- Integration of several fragmented theories about the (re)design of production systems
- The theoretical framework consists of three views: the workflow view, the resources view, and the organizational/decisional view
- The design framework consists of a connectance network of design choices (DC's), performance indicators (PI's), and relationships between DC's and PI's.

First Special Interest Group

Experimental Interactive Learning in Industrial Management

At the APMS 1993, Athens, Greece, Professor Jens Ove Riis organized a workshop and exhibition of games as part of the activities of IFIP WG 5.7. This meant the birth of the idea to form a SIG in the field.

- First workshop at Aalborg University, 1994
- Chairpersons:

1993-1999 Professor Jens Ove Riis at Aalborg University
2000-2015 Professor Riitta Smeds, Aalto University
2016- Lecturer Nick Szirbik, University of Groningen

Jens Ove Riis

Co-Designing Serious Games 15th IFIP WG 5.7 SIG workshop, Aalto University, 2011

Some reflections

- Unlike many of the other groups, why has WG 5.7 survived?
 - Ability to renew both with respect to membership, organization and activity
 - Need for a forum for research, publication and international cooperation
- Will it still survive?
 - Climate change effect
 - Social media visibility
 - Connection to industry
- Why is it needed?
 - A guaranty for a high scientific standard
 - Future industry is dependent on the research and education in production management